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WIND-TUNNEL TESTS ON A 3-DIII{ENSIONAL FIXED-GEOMETRY

SCRAMJET INLET AT M = 2.30 TO 4.60

James N. Mueller, Carl A. Trexler, and Sue W. Souders

Langley Research Center

SUK94&RY

Wind-tunnel tests were conducted on a baseline scramjet pressure instrument-

ed inlet model having fixed geometry and 48° swept leading edges at M = 2.30,

2.96, 3.95, and h.60, in the Langie[r Unitary Plan wind tunnel. The unit Reynolds

niJm_er was held constant at 6.56 x 106 per meter (2.0 x 106 per foot). The ob-

jectives of the tests were to establish inlet performance and starting character-

istics in the lower Mach number range of operation (less than M = 5). Surface

pressures were obtained on the inlet components, and detailed internal flow sur-

veys were made at the throat and cs_ture stations of the inlet. Contour plots

of the inlet-flow-field parameters such as the Mach number, pressure recovery,

flow capture, local static and total pressllre ratios at the survey stations are

shown for the test Mach numbers.

Significant results of the tests bear out the rationale of the design, that

is_ the sweep of the leading edges of the sidewall compression surfaces and all

do_mstream stations provide spillage of the air entering the inlet at low Mach

numbers thus permitting the inlet to start. This spillage occurs through the

open window upstream of the cowl lea_ing edge, which is bathed by shocks produced

by the sidewalls. This combination of the sween _mgle, the sidewall design, and

the cowl leading edge location produces near-maximnm mass capture ratios as a

function of Math number.

The throat Mach number 8ata indicate starting and operation to values of

stream Mach number probably below 2. The low-Math mzmber, favorable-flow charac-

teristics support the soundness of the fixed-geometry, hypersonic inlet design.

INTRODUCTION

The Langley Research Center is actively engaged in a research and technology

program to define and develop a viable airbreathing propulsion system for hyper-

sonic flight applications. The leading candidate for this system is the super-

sonic combustion ramjet (scramjet) engine. No scramjet has yet flown, but the

feasibility and internal performance potential of this concept (the scramjet) was

established by a number of successful ground tests of research-scale, hydrogen-



burning, supersonic-combustion engines in the 1960's. Internal thrust perform-
ance in these engine tests closely approaches values predicted on the basis of
isolated, high-efficiency, componentdata. (See reference 1 for discussion).

While internal thrust performance was the principal consideration in previ-
ous scramjet configurations, full integration of the engine with the vehicle is
necessary to achieve high installed performance (internal thrust minus external
drag). Research at Langley during the last i0 years (e.g., refs. 2-6) has led
to the definition of a lightweight, fixed-geometry, airframe-integrated, modular
scramJet engine concept which should be capable of high installed performance
over a wide Machnumberrange. In this concept (fig. I) the vehicle forebody
serves an inlet function by precompressing the flow, and the vehicle afterbody
takes over part of the nozzle expansion process so that the entire undersurface
of the vehicle is integrated into the engine design. At hypersonic speed the
engine requires nearly all the airflow between the undersurface of the vehicle
and its shock wave. This requirement leads to an inlet capture area having an
annular shape. In the present concept this annular area is split into small,
near-rectangular, independent modules or units (fig. 2) which can be placed side
by side to produce the total engine size (fig. 1).

The aerodynamic performance of the inlet of this modular, airframe-integrat-
ed scramjet is a particularly important factor in establishing the overall per-
formance of the engine. The investigation reported upon herein presents the
results of tests of a fixed-geometry, baseline, inlet model conducted in a wind
tunnel in the Machnumberrange of 2.3 to 2.6. The present tests were madein
the high Machnumbertest section of the Langley Unitary Plan Wind tunnel at a
unit Reynol_s n_ber of 6.56 x 106 meter (2.0 x 106 per foot), and at test Mach
numbersof 2.30, 2.96, 3.95, and 4.60. The objectives of the tests on the pres-
sure instrumented model were to establish inlet performance and starting charac-
teristics in the lower Machnumberrange of operation (M less than = 5).

The results of the tests are published with only preliminary analysis to
expedite the release of the test data.

SYMBOLS

The units used for the physical quantities defined in the report are given
in both the International Systemof Units (SI) and parenthetically in the U.S.
CustomaryUnits.

distance from cowl tip (fig. 12(d) cm (in))

C ! distance from cowl leading edge (fig. 12 (d)), cm (in.)

inlet height, 19.05 cm (7.50 in.); also used to designate maximum

values in contour plots (fig. 21)

designates minimum values in contour plots (fig. 21); also used to

designate the distance around the inlet at the capture station (fiR. 36(a))
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local static pressure, N/m 2 (Ibf/in 2)

free-stream static pressure in front of inlet N/m2(lbf/in 2)

total pressure, N/m 2 (ibf/in 2)

pitot pressure, N/m 2 (ibf/in 2)

absolute temperature, K (R)

total absolute temperature, K (R)

vmlocity, m/s (ft/s)

flow passage width (fig. i0), em(in.)

axis of inlet parallel to free-stream flow (fig. 3(b))

distance from foreplate leading edge (fig. 12(a)), cm, (in)

distance from sidewall leading edge (fig. 12(c)), cm (in)

distance from strut leading edge (fig. 12(e)), cm (in.)

axis of inlet perpendicular to free-stream flow (fig. 3(b))

distance from foreplate surface (fig. 12(c)), cm (in.)

axis of inlet perpendicular to free-stream flow and the

y axis (fig. 3(b)).

distance away from model plane of symmetry (fig. 12(a)),

cm (in.)

distance across throat or across duct (fig. i0), cm(in.)

density, gm/cc (slugs/ft 3)

free-stream unit mass flow, gm/c2-sec (slugs/ft2-sec)

APPARATUS AND PROCEDURE

Wind-Tunnel Facility

The investigation was performed in the high Mach number test section of the

Langley Unitary Plan wind tunnel. The tunnel is a variable-pressure, continous-

flow, closed-return-type facility, with provisions for the control of the humid-

ity, the stagnation temperature and the stagnation pressure of the enclosed air.

The nozzle leading to the test section is of the asymmetric, sliding-block type



which permits a continuous variation in the test section Mach number from 2.3 to

4.7. The test section is approximately 1.22m (4 feet) high, 1.22m (4 feet) wide,

and approximately 2.13m (7 feet) long.

Test Conditions

The conditions under which the tests were made are given in the following

table:

,m

Stagnation Stagnation Reynolds Number

Pressure Temperature
M

KN/m 2 lbf/ft 2 m-1 ft -1

2.30

2.96

3.95

4.60

73.35

103.85

!84.10

249.26

1532

2169

3845

5206

K R
..

339 610.

339 610

353 635.

353 635.

6.56x106

6.56x106

6.56x106

6.56x106

2.0x106

2.0x106

2.0xlO 6

2.0x106

The stagnation dew point was maintained sufficiently low to insure that no

conde_isation effects would be encountered in the test section and thus affect

the test results.

Model

General description. - General features of the fixed-geometry inlet model

are shown in the sketches of figure 3, and photographs of figures 4 and 5. The

exterior of the inlet is rectangular with a capture height and width of 19.03 cm

(7.50 inches) and 15.24 cm (6.00 inches), respectively. The model is approxi-

mately 0.90m (35.5 inches) long, not including the foreplate. The foreplate is

0.46m (18 inches) long. Construction material is aluminum except for stainless

steel struts, cowl, and wedges attached to the exterior sidewall at the leading

edges. The axis system for the inlet is shown in figure 3(b). The interior

arrangement of component parts can be seen in figure 4. Figure 5 shows the model

assembled and mounted on a holding stand, prior to mounting in the test section

for tests. The components of the inlet, such as the foreplate, sidewalls, cowl,

compression struts, upper surface, etc., are visible in the photographs of the

model. (See figure 4 and figure 5.) The leading edges of the sidewalls are

swept back at an angle of 48 u, as are the compression struts. A flow survey

probe is seen mounted aft of the struts in figure 4(a). Pressure tubing servi-

cing the static pressure orifices on the model surface, and the survey probe,

are seen trailing from the model components (figure 4(a)). Figure 6 shows the

model being installed in the tunnel test section.

Detail features. - As seen in figure 4, the 46 cm (18 inch) foreplate ex-

tending ahead of the sidewalls on the topside of the model generated a boundary



layer which simulated that from a Vehicle forebody. To insure that the boundary
layer entering the inlet was turbulent, transition trips were used. The size
and location of these trips are shownin figure 7. The trips located on the
foreplate not only caused transition but also a thickening of the boundary layer,
more closely simulating the forebody boundary layer that would be entering the
inlet. The boundary layer profile entering the inlet wasmeasuredby a three-
prong, adjustable rake (figure 8). A further discussion of the use of boundary
layer trips in wind tunnel models maybe found in ref. 7.

2

The fixed-geometry feature of the inlet dictates that the sidewall leading

edges must have a sweepback to turn the flow downward through the opening up-

stream of the cowl leading edge. This flow spillage is necessary during the

inlet 'starting' process at the low end of the Mach number operating range. The

sweepback angle was 48 °, based on design iterations.

Internally, the inlet sidewalls form 5.6 ° compression wedge angles in a

streamwise plane. The inlet top surface has a h° compression wedge; however,

the main purpose of the wedge surface is to fill the void in this area caused by

the downflow of air produced by the swept shock wave off the sidewall and strut

leading edges. The cowl internal surface is aligned with the flow ahead of the

inlet. The cowl has a i0 ° leading edge external wedge, with a sweepback of 50° .

Externally, the sidewalls of the inlet are essentially parallel to the flow

ahead of the inl_t; an exception of this is the stainless steel wedges attached

to the exterior of the sidewalls at the leading edges (figure 3(b)). These wed-

ges simulate adjacent inlet modules up to the inlet close-off station, next to

the cowl.

Dimensional details of the 48° swept compression struts are given in figure

9. The view shown here is in the x-z plane (streamwise plane) through the inlet,

and figure I0 shows the relative positions of the struts and cowl at the cowl

plane. (x-z plane at Y=H). The normal-to-the-leading-edge radius of the side-

walls, cowl, and struts was 0.01 em (0.004 inch), while the foreplate leading-

edge radius was 0.06 cm (0.023 inch).

Shock wave systems. - The test Mach number spanned a range in which two-

dimensional and three-dimensional flows characterized the fluid flow phenomena

in the inlet. Figure ii taken from reference 3, illustrates inviscid, theore-

tical shock wave systems generated in the inlet in the x-z plane, while ignoring

end effects from either the top surface or cowl. The Mach number at the inlet

face ranged from 7.0 down to 3.0. Below a Mach number of about 5 the shock

waves become detached, thus producing three-dimensional flow in the inlet.

Shock wave detachment means that the Mach number component normal to the swept

wedge leading edge cannot negotiate the normal-flow turning angle without be-

coming subsonic. The shock wave becomes detached from the wedge leading edge,
and the flow behind the detached shock wave is three-dimensional. This subsonic

normal Mach number flow condition can also occur when a shock wave has reflected

from a compression surface as represented in figure ii by the letter "D".

Therefore, for the test Mach numbers of 2.30 and 2.96, the flow is three-dimen-

sional in front of the struts. At the two higher test Mach numbers 3.95 and

h.60, three-dimensional flow phenomena occurred downstream of the strut leading

edges.



Under these circumstances, whenexamining the test results, keep in mindthe fact
that the flow through the inlet is subject to possible basic changes in char-
acter due to the transition of the flow from detached to attached-shock conditions
at the strut leading edges as the inlet Machnumber increases.

More details concerning the concepts of the inlet and model design can be
found in reference 3.

Instrumentation

Surface pressures. - The surfaces of the component parts of the model were

equipped with 106 static-pressure orifices. Components instrumented with orifices

included the foreplate, top surface, sidewalls, cowl, side strut, and center strut.

The orifices were normal and flush with the model surfaces. The pressures sensed

at the orifices were measured by scanivalves located external and adjacent to the

test section.

In figure 12, the orifice locations on each component of the model are shown,

and companion tables on the figure give the location of each orifice, with respect

to some identifiable datum, in terms of the characteristic height dimension, H,

of the model.

Foreplate boundary-layer probe. - The three-prong, boundary layer probe rake

was located in the foreplate of the inlet model (fig. 13). It was situated nearthe

longitudinal centerline of the forep!ate at Z/H = 0.133, and it was aligned with

the leading edge of the sidewalls at Y/H = 0 (See fig. 8 ). The nose of the probe

was at a distance of 45.7 cm (18 inches) from the leading edge of the foreplate.

Construction details and method of mounting of the rake probe are shown in figure 13.

Pitot and static pressure probes. - Pitot and static pressure measurements

were made with several different probes and rakes. The design details of this

instrumentation are given in figures 17 and 18 of reference 3. Pressures obtained

from these probes and rakes were measured on individual strain gage transducers

located external and adjacent to the test section.

Procedure

General. - The model was mounted in the test section in an inverted attitude,

that is, with the cowl up. (See figure 6). The inverted model proved easier to

access, such as when installing, adjusting, and removing flow survey probes and

rakes.

In all tests, the model was flow-aligned, that is, it was positioned at zero

degree angle-of-attack and yaw relative to the free-stream flow direction, based

on previously obtained tunnel calibration data for each test Mach number.

Twelve tests were made on the inlet model. Each test was characterized by a

particular flow survey probe located at a specific station in the inlet. In all

the tests, the inlet geometry, that is, sweep of the sidewalls, shape and locations

of the compression struts, etc., was fixed; only the probes and their locations

were changed. Each test also provided the opportunity to move the foreplate

boundary-layer probe to a new position.



Inlet throat flow-field survey. - Pitot pressure surveys were obtained in
the inlet center and side throats at five vertical (y coordinate) stations, and

at all test Mach numbers. The static pressure surveys were obtained at four

vertical stations; and, because the static survey probe surveyed only one center

passage, it was necessary to rely on wall static data for the side passage static

pressure(s). The survey probes were driven laterally (z coordinate) across the

flow at each particular survey station by an electric motor and actuator attached

to the model at the appropriate sidewall access location. (See figure lb.)

The pressure data from the probe, and its location were recorded using an elec-

tronic data acquisition system.

Several passes of the probe in a move-pause mode were made across each sur-

vey path in the throat of the inlet. This multiple-pass procedure insured that

pressure-stabilization had occurred in the pressure measuring circuit of the

probe. The pressure data were measured by individual transducers located exter-

nal, and adjacent to, the test section.

Capture measurement station survey s . - The seven-tube pitot rake probe and

the seven-tube static pressure probe were used to survey the flow at the capture

measurement station. (See figure 14). The motor and actuator which were used

to drive the inlet throat survey probes were used to move these rakes across the

flow. The probe rakes were mounted vertically, that is, in the x-y plane of the

inlet, and they were traversed in the z direction. The pressure tubings from

the probes were connected to individual strain-gage transducers, which were ex-

ternal, and adjacent to, the test section. Multiple passes of the rakes were

made during a test, as was the case for the inlet throat surveys.

Foreplate boundary-layer survey. - The three-prong foreplate boundary-layer

rake previously described (fig. 13) was adjusted in height and locked into place

between tests to obtain detail inlet entrance conditions near the top surface.

The first position of the rake in the test was with the probe nearest the surface

at zero distance from the surface; that is, it was resting on the surface of the

foreplate. The position of the probe was stationary during a test, and adjusted

in height between tests to obtain detailed inlet entrance conditions near the

top surface. A total of five positions, in approximately 0.13 cm (O.05-inch)

increments, were set during the tests. The outer probe on the rake reached a

maximum distance of 1.47 cm (.58-inch) from the surface of the plate.

Data red_ction. - Standard methods were used in the data reduction techniques.

Extensive use was made of machine plotting to generate data figures. Each of

the pressure readings obtained were nondimensionalized by the tunnel free-stream

pressure.

A computer program was written which utilized a curve-fitting interpolation

procedure to expand the pitot and static pressure survey data into a grid network.

While this technique does not increase measured data accuracy, it provides a

rapid method for studying the entire flow area without resorting to laborious

hand calculations and integrations. In addition, a theoretical upper limit of

total pressure recovery from the inviscid shock wave system for each test Mach

number was applied to each grid point; and, if the value of recovery computed

from the input pitot and static pressure exceeded this limit, the input static

ORIGINAL PAGE IS
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pressure was adjusted to obtain the limiting total pressure recovery. Mach

number, total pressure, and unit mass flow were calculated for each grid point;

and contour maps of each parameter were plotted by the computer graphics system.

After completing the grid, numerical integrations were performed to compute a

mass weight Mach number and total pressure recovery for the inlet throats, and

a value for the capture parameter (pu/pluT,) at the capture measurement station.
(See reference 4 for a summary of these_c_Iculations.)

TEST RESULTS

A significant body 6f pressure data, including surface pressures and inter-

nal flow pressures, was acquired in the experimental investigation. These data

have been reduced and plotted, and the figures have been grouped under fo_(h)

separate headings: (i) Basic pressure data on the inlet components (surface

pressures); (2) foreplate boundary layer profiles; (3) internal pitot and static

surveys; and (4) contour plots of pitot and static pressure ratios, Mach Number,

recovery pressure and mass flow capture. These data are presented in figures 15

to 43, for the four test Mach Numbers. (See Index to Figures.) The scope of the

data provides a detailed "view" of the inlet functions, and provides a framework

for detail analyses of the fluid mechanics of the inlet flows.

As this report is primarily a data report of the wind tunnel tests, only

brief and preliminary analysis of the data will be evident. However, as appro-

priate, significant features or highlights of the test data will be emphasized.

As discussed in the Model section of the report, the test Mach numbers

spanned a range in which two-dimensional and three-dimensional flows character-

ized the flow phenomena in the inlet. Under these circumstances, when examining

the test results, keep in mind the fact that the flow through the inlet is

subject to possible basic changes in character due to the transition of the flow

from detached to attached shock conditions at the strut leading edges as the
inlet Math number increases.

Basic Pressure Data on the Inlet Components - Surface Pressures

There were 106 static pressure orifices located on the surfaces of the

various components of the inlet, and spatially placed so as to measure the most

significant pressure phenomena in the inlet. (See figure 12.) In figures 15

through 18 the pressures acting on these components are shown for the four Mach

numbers. The components are identified as top surface, side wall, side strut,

center strut, cowl and the forep!ate. In the figures, the ordinate is the measured

surface pressures on the component_ nondimensionalized by the free-stream static

pressure. The abscissa of the plots represent surface length along a particular

inlet component nondimensionalized by the height of the inlet, H. The locations

of the static-pressure orifices on the various components of the model are
given in figure 12.

Figures 15 to 18 are grouped according to test Math numbers. The differences

in the runs shown here result from a change made in the type of internal flow

probe used on that particular test run. The f_rst run (round symbols) had the

8



capture measurement pitot rake in the model at access location number 5 (see

figure 14), while the two remaining runs (square and triangle symbols on the

figure) had either the pitot or static probe in access location number 4. The

purpose of showing the data from more than one run is to show the repeatability

of the surface pressure measurements in the presence of the internal flow probes.

It was assumed that, the probes would not cause any significant interferences to

the surface pressure measurements upstream of their locations, and this assump-

tion appears to be borne out in most cases (figs. 15-18) by the negligible spread

in the test data.

The exception appears to be in the measured pressures over the foreplate,

where differences appear to be more exaggerated, especially as the test Mach

number increases. (Compare figures 15(g), 16(g), 17(g), and 18(g).) This is

believed to be scatter due to the accuracy with which the low pressures on the

foreplate can be obtained. Note that the maximum spread in the pressure-data

ratio P/PI occurs at the highest test Ma_h number (M = 4.60_ where the free-
stream pressure is the lowest (744.63N/m _ or 0.108 ibf/inch ) of the four test

Mac_ numbers. Quantitatively, this spread translates into a pressure of 275.79

N/m_(0.04 ibf/inch_).

A cursory examination of the data on a given component for the four test

Mach numbers reveals no major change in the character of the pressure distribu-

tions with change in Mach numbers, even though the flow through the inlet is

changing from a three-dimensional-type dominated flow at Mach numbers of 2.30

and 2.96 to one that is more or less two-dimensional in character at Mach numbers

of 3.95 and 4.60. At M = 2.30, the pressures on all the components exhibit a

'smooth'distribution (i.e., the pressures are fairly constant with no sharp gra-

dients present). As the Mach number increases, however, gradients appear in the

pressure distributions and become more pronounced, as would be expected. This

effect is due to the growth in the number of shock-wave bays formed by the inter-

section of initial and/or reflected shock waves within the flow passages of the

inlet (e.g., fig. ii), and to the increase in the magnitudes of the pressures

within these bays. A good example of the foregoing phenomena can be seen in

comparing the sidewall pressures of figures 15(b), 16(b), 17(b), and 18(b).

Adverse, high-magnitude pressure gradients are not desirable because of

their role in separating the boundary layer along the component surfaces. In

this regard, the expected low static pressures and gradients on the top surface

are realized because the swept compression surfaces turned the flow away from this

region. These low pressures permitted the boundary layer generated on the fore-

plate to enter the inlet, and should likewise allow the boundary layer on the

forebody of a hypersonic vehicle to pass through the inlet without separation.

Conversely, the static pressures on the cowl surface and the lower wall surface

are high due to the turning of the flow downward toward the cowl and the subse-

quent shock wave interactions.

Foreplate Boundary Layer Profiles

In figure 19 are _hown the experimental foreplate boundary-layer surveys

obtained during the tests for the four Mach numbers. The plots show the distri-



bution of the measured impact (PITOT) pressures nondimensionalized by the free-
stream pressure (PI), against the height of the boundary layer relative to the
total height of the inlet (Y/H) as the ordinates. The boundary layer thickness
on the foreplate ranges between 4.5 to 5.5 percent of the inlet height. The pur-
pose of the extended foreplate and the roughness strips attached to it near its
leading edge was to generate a relatively thick boundary layer for the inlet to
swallow. In the actual case, the underbody of the aircraft fuselage creates a
thick boundary layer which must be ingested by the engine.

Internal Pitot and Static Pressure Surveys

Figures 20 to 43 showthe results of the pitot and static pressure surveys
madeat various locations within the inlet during this investigation. (See Index
to Figures.) Surveys were madein one center passage throat region between the
side and center compression struts (figures 20 to 27); in one side passage throat
region between the inlet sidewall and outboard surface of the side strut (figures
28 to 35); and at the capture station (figures 36 to 43), For reference, see
figure 14 which showsthe relative positions of the inlet throat and capture sta-
tions. Also seen on this figure are probes mountedat the throat and capture
stations to illustrate their relative locations. Sketches on figures 20(a),
28(a), and 36(a) illustrate the coordinate system shownon the plots. The nota-
tion H on the sketches indicates the capture height at the inlet entrance, that
is geometric inlet height, 19.05 cm (7.5 inches).

Note that no static pressure measurementswere madein the side passages
(figures 28(c), 30(c), and 34(c)). The dash lines on the figures represent the
approximate level of the static pressures in these passages measuredon the strut
surfaces, sidewall, cowl, and top surfaces. The throat pressure surveys for
Y/H = .17 were obtained by extrapolating the survey data to the top surface. The
derived plots of pitot and static pressure distributions shownin parts (b) and
(d) of figures 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, h0 and 42 were necessary
for a computer graphics program program to generate the contour plots shownin
this report. While parts (a) and (c) of each figure (except figures 28(c), 30(c),
32(e), are actual pressure data obtained in the test program, the derived press-
ure data for all the figures represent the extrapolation by hand of the pitot
and static pressure survey data to the various wall surfaces, as well as to the
computer generation of evenly spaced data to be used in developing the contour
plots. The derived pressure surveys are evenly spaced in both the y and z di-
rections and are included here because of their close association with the actual

pitot and static pressure distributions shown in parts (a) and (c) of figures

20, 22, 24, 26, 28, 30, 32, 3h, 36, 38, 40, and 42. (Note that on figures 20(a),

22(a), 2h(a), and 26(a) the data shown were obtained with a 2-prong (forked)

probe and the pressure indicated by the square and diamond symbols should overlap.
The discrepancy is unresolved).

Evident in the derived-side-passage-static-pressure distributions (part (d))

are small regions where the upper limit on the calculated total pressure recovery

altered the input values of static pressure. The theoretical upper limit on re-

covery, calculated from the inviscid shock wave systems, was found to be 0.99,

0.97, 0.96, and 0.94 for MI = 2.3, 2.96, 3.95, and 4.6, respectively.
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Contour Plots of Internal Flows - Basic Parameters

In figures 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, and 43 are showncon-
tour plots of somebasic parameters of the flow in the internal passages of the

inlet. The various model componentsare labeled and shownon figures 21(a),
29(a), and 37(a) for the center passage, side passage, and capture stations, re-
spectively. The method of computing the contour maps is described in reference
3 in the section on DATA-REDUCTIONPROCEDURE.Parts (a) and (b) of these figures
are mapsof the data input used to compute the Machnumber, recovery pressure
(P¢/Ptl), and mass flow capture parameter (pU/PlUI) shownin parts (e), (d), and
(e_of each figure, respectively. The procedure for computing the contours at
the capture station was identical to that of the inlet throats. At this station
no extrapolation of data to the top surface was necessary because of the increased
number (total of seven) of tips on both the pitot and static survey rakes.

The letters H and L on the contour plots locate the high and low points
within the respective contour, and the value of the associated high or low was
also generated by the mechanical plotting program.

Besides the fact that no flow separation was detected, the most encouraging
aspect of the throat and capture station surveys is the fact that the local Mach
numbers in the passages exceedM = i even at the lowest test Machnumber (M =
2.30). (See figures 21(c), 23(c), 25(c), 27(c), 29(c), 31(c), 33(c), 35(c),
37(c), 39(c), 41(c), and 43(c). The concepts of the inlet design, that is, fixed
geometry and swept surfaces (sidewalls, struts, etc) are based on the premise
that the flow into the inlet is self-regulating through spillage to provide low
Machnumber "starting characteristics. The surveys showlow Machnumber favor-
able flow characteristics and, therefore, support the soundness of the fixed-
geometry, hypersonic inlet design.

CONCLUDING REMARKS

Wind tunnel tests on a pressure-instrumented baseline scramjet inlet model

having fixed-geometry and a h8 ° swept leading edge at M = 2.30, 2.96, 3.95, and

4.60 have shown that the inlet does start and operates at the lowest test Mach

m_mber without flow separation. These tests bear out the rationale of the de-

sign, that is, the sweep of the leading edges of the sidewall compression surfaces,

and all downstream stations provide spillage of the air entering the inlet at low

Mach numbers thus permitting the inlet to start. This spillage occurs through

the open window upstream of the cowl leading edge. The combination of the sweep

ang].e, the sidewall design, and the cowl leading-edge location produces near-

maximum mass flow capture ratios as a function of Mach number. The low Mach

niJmber favorable-flow characteristics support the soundness of the fixed-geometry

h_ersonic inlet design.

l,
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Figure 2L - Continued.



/
/

( c )Mach number.

Figure 2L - Continued. 75



\

76

( d ) Recovery.
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( b ) PIP1"

Figure 23, - Continued.
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( c ) Mach number.

Figure 23. - Continued.



( d ) Recovery.

Figure 23. - Continued. __,5"



( e ) Capture.

86 Figure 23. Concluded.
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( a ) Pitot/P 1.

Figure 25. - Contour plots of flow parameters: center passage. M-3. 95. 91
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( b ) P/P1"

Figure 25. - Continued.
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( c I Mach number.

Figure 25. - Continued.
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( d ) R_e_.
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( e ) Captur'e.

Figure 25. - Concluded.
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Figure 27. - Contour plots of flow parameters; center passage. M=4. 60.
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Figure 29. - Contour plots of flow _rameters; side passage. M=2.30.
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(a) Pitot/Pr

Figure 31. - Contour plots of flow parameters; side passage. M-2. 96.
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( c ) Mach number.
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( e 1 Capture.
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Figure 3L - Concluded.
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( a ) Pitot/P 1.

Figure 33. - Contour plots of flow parameters; side passage. M-3. 95.
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( d ) Recovery.
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{ a }"PItot/PI:

Figure 35. - Contour plots of flow parameters; side passage. M,,4. 60.
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( c )Mach number.

Figure 35. Continued.
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(b) P/PI"

Figure 37.'- Continued.
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( a ) Pitot/P].

Contour plots of flow parameters; capture station. M-2. 96.
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( b ) P/el.-

Figure 39. - Continued.
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( c ) Mach number.

Figure 39. - Continued.
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( a ) Pitot/P 1"

Figure 41. - contour plots of flow parameter; capture station. M-3. 95.
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Figure 4L - Continued.



( c } Mach number.

Figure 41. - Continued.
165



iI\

II

/

166

( d ) Recovery,

Figure 41. - Continued.
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172 Figure 43.
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( a ) Pitot/P 1.

Contour plots of flow parameters; capture station. M,,4. _.
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._igure 43. - continued.
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( c ) Mach number.

Figure 43. - Continued.
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( d ) Recovery.

Figure 43. - Continued. .1.75
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( e )Capture.

Figure 43. - Concluded.


